
Chapter 15 

Oscillations 



15.1 Simple Harmonic Motion 

Oscillatory Motion: Motion which is periodic in 

time; motion that repeats itself in time. 

• Examples:  

• Power line oscillates when the wind blows past.  

• Earthquake oscillations move buildings – 

sometimes the oscillations are so severe, that 

the system exhibiting oscillations break apart. 

SHM:  

 

• If the motion is a sinusoidal function of time, it is 

called simple harmonic motion (SHM). 

 

• Mathematically SHM can be expressed as: 
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• xm is the amplitude (maximum displacement of the system) 

• t is the time 

• ω is the angular frequency 

• Ф is the phase constant or phase angle 



• Frequency of oscillation: number of oscillations 

that are completed in each second. 

 

• The symbol for frequency is f, and the SI unit is 

the hertz (abbreviated as Hz). 
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15.2 Simple Harmonic Motion 

• In the figure snapshots of a simple oscillatory 

system is shown. A particle repeatedly moves back 

and forth about the point x = 0. 

 

• The time taken for one complete oscillation is the 

period, T. In the time of one T, the system travels 

from x = + xm, to – xm, and then back to its original 

position xm.  

 

• The velocity vector arrows are scaled to indicate the 

magnitude of  the speed of the system at different 

times. At x = ±xm, the velocity is zero. 

 



• Figure a plots the displacement of two 

SHM systems that are different in 

amplitudes, but have the same period. 

 

• Figure b plots the displacement of two 

SHM systems which are different in periods 

but have the same amplitude. 

 

• The value of the phase constant term, , 

depends on the value of the displacement 

and the velocity of the system at time t = 0.  

 

• Figure c plots the displacement of two SHM 

systems having the same period and 

amplitude, but different phase constants.  

15.2 Simple Harmonic Motion 



For an oscillatory motion with period T,  
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The cosine function also repeats itself when the argument increases by 2p. 

Therefore,   
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Here,  is the angular frequency, and measures the angle per unit time. The SI 

unit is radians/second. To be consistent,  then must be in radians. 

15.2 Simple Harmonic Motion 



15.2 Simple Harmonic Motion 

The velocity of SHM: 
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The maximum value (amplitude) of velocity is 

xm. The phase shift of the velocity is p/2, making 

the cosine to a sine function. 

 

The acceleration of SHM is:  
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The acceleration amplitude is 2xm.  

 

In SHM a(t) is proportional to the displacement but opposite in sign. 



• Velocity is the time rate of change of 

position: 

 

 

 

 

• Acceleration is the time rate of 

change of velocity: 
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15.2 Simple Harmonic Motion 



15.3 Force Law for SHM 

From Newton’s 2nd law: 
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SHM is the motion executed by a system subject to a force that is 

proportional to the displacement of the system but opposite in sign. 

• The block-spring system shown on the 

right forms a linear SHM oscillator. 

 

• The spring constant of the spring, k, is 

related to the angular frequency, , of 

the oscillator: 
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Example: force law 



Example: force law 



Example: force law 



15.4: Energy in SHM 

• The potential energy of a linear oscillator is 

associated entirely with the spring.  
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• The kinetic energy of the system is associated 

entirely with the speed of the block. 
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• The total mechanical energy of the system: 
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• In the absence of nonconservative forces, 

the energy of a simple harmonic oscillator 

is constant. 

 

• Energy is transferred back and forth 

between kinetic and potential modes. 

15.4: Energy in SHM 



Example: Energy in SHM 

Many tall building have mass 

dampers, which are anti-sway devices 

to prevent them from oscillating in a 

wind. The device might be a block 

oscillating at the end of a spring and 

on a lubricated track. If the building 

sways, say eastward, the block also 

moves eastward but delayed enough 

so that when it finally moves, the 

building is then moving back 

westward. 

 

Thus, the motion of the oscillator is 

out of step with the motion of the 

building.  

 

Suppose that the block has mass of  

m = 2.72 x 105 kg and is designed to 

oscillate at frequency f = 10.0 Hz and 

with amplitude xm = 20.0 cm. 

 

(a) What is the total mechanical 

energy E of the spring-block system? 



Example: Energy, continued 



15.4: An Angular SHM 

• The figure shows an  example of angular SHM. In a 

torsion pendulum involves the twisting of a suspension 

wire as the disk oscillates in a horizontal plane. 

 

• The torque associated with an angular displacement of 

q is given by:  

q 
• κ is the torsion constant, and depends on the 

length, diameter, and material of the suspension 

wire. The period, T, relates to  as: 
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Example: Angular SHM 

Figure a shows a thin rod whose length L is 12.4 cm 

and whose mass m is 135 g, suspended at its midpoint 

from a long wire. Its period Ta of angular SHM is measured 

to be 2.53 s. An irregularly shaped object, which we 

call object X, is then hung from the same wire, as in Fig. b, and its 

period Tb is found to be 4.76 s. What is the 

rotational inertia of object X about its suspension axis? 

 

Answer: The rotational inertia of either the rod or 

object X is related to the measured period. The rotational inertia of a 

thin rod about a perpendicular axis through its midpoint 

is given as 1/12 mL2.Thus, we have, for the rod in Fig. a, 

Now let us write the periods, once for the rod 

and once for object X: 

The constant k, which is a property of the wire, is the same for both figures; only the periods 

and the rotational inertias differ. 

Let us square each of these equations, divide the second by the first, and solve the resulting 

equation for Ib. The result is 



15.6: Pendulums 

• In a simple pendulum, a particle of mass m is 

suspended from one end of an unstretchable massless 

string of length L that is fixed at the other end. 

 

• The restoring torque acting on the mass when its 

angular displacement is q, is: 
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• This is true for small angular displacements, q.  



15.6: Pendulums 

A physical pendulum can have a complicated distribution 

of mass. If the center of mass, C, is at a distance of h 

from the pivot point (figure), then for small angular 

amplitudes, the motion is simple harmonic.  

 

The period, T, is: 
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Here, I is the rotational inertia of the 

pendulum about O. 



In the small-angle approximation we can assume that q << 10 ° and use the 

approximation sin q   q.   Let us investigate up to what angle q  is the 

approximation reasonably accurate?  

q (degrees)  q (radians)  sin q 

5   0.087   0.087 

10   0.174   0.174 

15   0.262   0.259  (1% off) 

20   0.349   0.342  (2% off) 

 

Conclusion: If we keep q < 10 °  we make less than 1 % error.  

                                                                                  

15.6: Pendulums 



Example: pendulum 

In Fig. a, a meter stick swings about a pivot point at one end, at 

distance h from the stick’s center of mass. 

(a) What is the period of oscillation T? 

 

KEY IDEA: The stick is not a simple pendulum because 

its mass is not concentrated in a bob at the end opposite 

the pivot point—so the stick is a physical pendulum.  

 

Calculations: The period for a physical pendulum depends on the 

rotational inertia, I, of the stick about the pivot point. We can treat the 

stick as a uniform rod of length L and mass m. Then I =1/3 mL2, where 

the distance h is L. Therefore,  

Note the result is independent of the pendulum’s mass m. 



Example: pendulum, cont.: 

(b) What is the distance L0 between the pivot point O of the stick and the center of 

oscillation of the stick? 

 

Calculations: We want the length L0 of the simple pendulum (drawn in Fig. b) that has 

the same period as the physical pendulum (the stick) of Fig. a. 



15.7: SHM and Uniform Circular Motion 

• Consider a reference particle P’ moving in uniform 

circular motion with constant angular speed (w). 

 

• The projection of the particle on the x-axis is a point P, 

describing motion given by: 
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• This is the displacement equation of SHM.  

 

• SHM, therefore, is the projection of uniform circular 

motion on a diameter of the circle in which the circular 

motion occurs. 



15.8: Damped SHM 

In a damped oscillation, the motion of the oscillator is 

reduced by an external force. 

 

Example: A block of mass m oscillates vertically on a 

spring on a spring, with spring constant, k.  

From the block a rod extends to a vane which is 

submerged in a liquid. The liquid provides the external 

damping force, Fd.  

 

 



• Often the damping force, Fd, is proportional to the 

1st power of the velocity v. That is:  

15.8: Damped SHM 
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• From Newton’s 2nd law, the following DE results: 
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• The solution is: 
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15.8: Damped SHM 

The figure shows the displacement 

function x(t) for the damped 

oscillator described before. The 

amplitude decreases as xm exp (-

bt/2m) with time.  
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Example: damped SHM 

For the damped oscillator in the figure, m  250 g, k = 85 N/m, 

and b =70 g/s. 

 

(a) What is the period of the motion? 



(b) How long does it take for the amplitude of the damped oscillations to drop to half its 

initial value? 

Example: damped SHM, cont 



(c) How long does it take for the mechanical energy to drop to one-half its initial value? 

Example: damped SHM, cont. 



15.9: Forced oscillations and resonance 

• When the oscillator is subjected to an external force that is periodic, 

the oscillator will exhibit forced/driven oscillations. 

 

• Example: A swing in motion is pushed with a periodic force of angular 

frequency, d.    

 

• There are two frequencies involved in a forced driven oscillator: 

 

I. , the natural angular frequency of the oscillator, without the 

presence of any external force, and 

 

II. d, the angular frequency of the applied external force. 



15.9: Forced oscillations and resonance 

Resonance will occur in the forced oscillation if 

the natural angular frequency, , is equal to d.  

 

This is the condition when the velocity amplitude 

is the largest, and to some extent, also when the 

displacement amplitude is the largest. The 

adjoining figure plots displacement amplitude as 

a function of the ratio of the two frequencies. 

Example: Mexico City collapsed in September 1985 when a major earthquake 

hit the western coast of Mexico. The seismic waves of the earthquake was 

close to the natural frequency of many buildings 


